Requirements

- University Degree
- "EGER" Placement Test (65%)
- "EBER" Placement Test (60%)
- Interview by TS Committee
- EDISK analysis

The final year students may enroll in the program after passing more tests

Duration

7 months; 220 hrs
3 sessions a week

Fast-Track MBA program is designed to give applicants the opportunity to gain a competitive advantage in the job market, while saving time.

For More Information Call
+ 02 0101492666
+ 02 01024448388
+ 02 01098624660

www.eltizam.net
eltizam.net
Practical Guide Course to the analysis of Genes and Protein

Course goals:
The researchers and students who are very interested in studying professional training course in bioinformatics and also need to close the gap between the biology and information technology.

Main lessons:
- Molecular biology (10-lessons)
- Bioinformatics components (9-lessons)
- Information technology components

Course duration: 24 hrs (10 hrs for Molecular biology, 10 hrs for bioinformatics & 4 hrs for IT)

Advanced Practical Guide Course to the analysis of Genes and Protein

Course goals:
The researchers and students who are very interested in studying professional training course in bioinformatics and also need to close the gap between the biology and information technology.

Main lessons:
- Advanced Molecular biology (5-lessons)
- Bioinformatics components (13-lessons)
- Information technology components

Course duration: 46 hrs (5 hrs for Molecular biology, 25 hrs for bioinformatics & 6 hrs for IT) Plus 10 hrs for case study
GEL Documentation Analysis

Course goals:
A gel doc, also known as a gel documentation system, gel image system or gel imager, is equipment widely used in molecular biology laboratories for the imaging and documentation of nucleic acid and protein suspended within polyacrylamide or agarose gels.

Main lessons:
- Introduction to image analysis
- What is the different between analog image and digital image?
- Image calibration and enhancement
- Migration detection and correction
- Construct Dendogram by homology or similarity distance
- Using UPGMA to construct the phylogenetic tree

Course duration: 12 hrs

Genome Analysis

Course goals:
The genome analysis is very important branch of bioinformatics. The course covers the predictive methods using DNA sequences. The importance of the archived database, dbEST. Sequence assembly and finishing methods

Main lessons:
- PREDICTIVE METHODS USING DNA SEQUENCES
- EXPRESSED SEQUENCE TAGS (ESTs) 283
- SEQUENCE ASSEMBLY AND FINISHING METHODS
- Blasting Genome

Course duration: 30 hrs

BIOPERL

Course goals:
Practical extraction report language (PERL), with its highly developed capacities in string text processing, networking, has emerged as the programming language of choice for biological data analysis. In this course, you will learn how to use Perl programming methods to compare DNA sequences, reading sequence files and translate DNA sequences.

Main lessons:
- Introduction to Perl syntax language
- Using Perl to extract a specific motif of DNA or Protein sequences
- DNA regular expression
- String algorithm
- Sequence formats
- ORF finder regular expression
- Translate from DNA to 6 open reading frames
- Retrieve Genbank report by Bioperl modules

Course duration: 24 hrs (10 hrs for Molecular biology & 14 hrs for Bioperl)

Get more details - at eltizam.net